One formula for r is:
$r=\frac{\sum x y}{\sqrt{\sum x^{2} \sum y^{2}}}$
Dividing numerator and denominator by N :
$\mathrm{r}=\frac{\sum x y / N}{\sqrt{\sum x^{2} \sum y^{2} / N}}$
Note that x and y are assumed to be in deviation-score form (means of 0).
Letting the two parallel forms of the test be x_{1} and x_{2}
$\mathrm{r}=\frac{\sum x_{1} x_{2} / N}{\sqrt{\sum x_{1}^{2} \sum x_{2}^{2} / N}}$
Separating x_{1} and x_{2} into true and error components, the numerator becomes:

$$
\frac{\sum\left(t+e_{1}\right)\left(t+e_{2}\right)}{N}
$$

Note that the two forms have the same true score (for a given observation) but different errors of measurement.

Expanding terms, the numerator becomes:

$$
\frac{\sum t^{2}+\sum t e_{1}+\sum t e_{2}+\sum e_{1} e_{2}}{N}
$$

Since the true scores and the errors of measurement are uncorrelated and each has a mean of 0 , the terms that include error vanish since the average cross-product is 0 .

$$
\frac{\sum t^{2}}{N}
$$

which is the variance of true scores:
$\boldsymbol{\sigma}_{\text {True }}^{2}$
The denominator is the square root of the product of the two test variances. The two variances are:

$$
\frac{\sum x_{1}^{2}}{N} \text { and } \frac{\sum x_{2}^{2}}{N}
$$

The square root of the product of the variances is simply the variance. The variances of x_{1} and x_{2} are equal and are denoted by as:
$\sigma_{\text {Test }}^{2}$
$\sqrt{\sigma_{\text {Test }}^{2} \sigma_{\text {Test }}^{2}}=\sigma_{\text {Test }}^{2}$
Therefore, the correlation between the two parallel forms is:

$$
\frac{\sigma_{\text {True }}^{2}}{\sigma_{\text {Test }}^{2}}
$$

