Explore

Output Created

22 Jun 98 11:50:32

Comments


Input

Data

A:\guns\spss\exp1data.sav

Filter

<none>

Weight

<none>

Split File

<none>

N of Rows in Working Data File

32

Missing Value Handling

Definition of Missing

User-defined missing values for dependent variables are treated as missing.

Cases Used

Statistics are based on cases with no missing values for any dependent variable or factor used.

Syntax

EXAMINE
VARIABLES=an aw cxen cxew
/PLOT BOXPLOT STEMLEAF NPPLOT
/COMPARE VARIABLES
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Resources

Elapsed Time

0:00:00.39


Cases

Valid

Missing

Total

N

Percent

N

Percent

N

Percent

AN

32

100.0%

0

.0%

32

100.0%

AW

32

100.0%

0

.0%

32

100.0%

CXEN

32

100.0%

0

.0%

32

100.0%

CXEW

32

100.0%

0

.0%

32

100.0%


Statistic

Std. Error

AN

Mean

41.6395

.9055

95% Confidence Interval for Mean

Lower Bound

39.7929


Upper Bound

43.4862


5% Trimmed Mean

41.4581


Median

42.0833


Variance

26.235


Std. Deviation

5.1220


Minimum

31.12


Maximum

54.39


Range

23.27


Interquartile Range

5.7947


Skewness

.494

.414

Kurtosis

1.062

.809

AW

Mean

40.9184

.9342

95% Confidence Interval for Mean

Lower Bound

39.0132


Upper Bound

42.8237


5% Trimmed Mean

40.9703


Median

41.3928


Variance

27.926


Std. Deviation

5.2845


Minimum

28.56


Maximum

52.95


Range

24.40


Interquartile Range

5.5208


Skewness

-.263

.414

Kurtosis

.556

.809

CXEN

Mean

41.3356

1.0764

95% Confidence Interval for Mean

Lower Bound

39.1402


Upper Bound

43.5311


5% Trimmed Mean

41.3389


Median

42.6035


Variance

37.079


Std. Deviation

6.0892


Minimum

26.83


Maximum

55.45


Range

28.61


Interquartile Range

4.9768


Skewness

-.191

.414

Kurtosis

1.044

.809

CXEW

Mean

41.4576

.9778

95% Confidence Interval for Mean

Lower Bound

39.4635


Upper Bound

43.4518


5% Trimmed Mean

41.4713


Median

42.6907


Variance

30.592


Std. Deviation

5.5310


Minimum

28.89


Maximum

54.92


Range

26.04


Interquartile Range

6.0087


Skewness

-.105

.414

Kurtosis

.751

.809


Kolmogorov-Smirnov(a)

Shapiro-Wilk

Statistic

df

Sig.

Statistic

df

Sig.

AN

.123

32

.200(*)

.949

32

.217

AW

.114

32

.200(*)

.976

32

.719

CXEN

.148

32

.074

.940

32

.097

CXEW

.132

32

.169

.967

32

.489

* This is a lower bound of the true significance.

a Lilliefors Significance Correction

Stem-and-Leaf Plots

AN Stem-and-Leaf Plot

 

 Frequency    Stem &  Leaf

 

     1.00        3 .  1

      .00        3 .

     3.00        3 .  444

     3.00        3 .  777

     4.00        3 .  8889

     5.00        4 .  01111

     8.00        4 .  22222333

     4.00        4 .  4445

     1.00        4 .  6

     1.00        4 .  9

     2.00 Extremes    (>=54)

 

 Stem width:     10.00

 Each leaf:       1 case(s)

 

 

 

 

 

AW Stem-and-Leaf Plot

 

 Frequency    Stem &  Leaf

 

     2.00 Extremes    (=<30)

     2.00        3 .  33

     2.00        3 .  45

      .00        3 .

     7.00        3 .  8888999

     5.00        4 .  01111

     5.00        4 .  22233

     5.00        4 .  44444

     2.00        4 .  77

     1.00        4 .  9

     1.00 Extremes    (>=53)

 

 Stem width:     10.00

 Each leaf:       1 case(s)

 

 

 

 

 

CXEN Stem-and-Leaf Plot

 

 Frequency    Stem &  Leaf

 

     3.00 Extremes    (=<32)

     1.00        3 .  1

      .00        3 .

     1.00        3 .  4

     1.00        3 .  7

     6.00        3 .  889999

     1.00        4 .  0

    12.00        4 .  222222233333

     3.00        4 .  455

     1.00        4 .  6

     1.00        4 .  9

     2.00 Extremes    (>=54)

 

 Stem width:     10.00

 Each leaf:       1 case(s)

 

 

 

 

 

CXEW Stem-and-Leaf Plot

 

 Frequency    Stem &  Leaf

 

     1.00 Extremes    (=<29)

     3.00        3 .  034

     8.00        3 .  56788889

    15.00        4 .  112222233333444

     3.00        4 .  669

     1.00        5 .  0

     1.00 Extremes    (>=55)

 

 Stem width:     10.00

 Each leaf:       1 case(s)

 

 

 

 

 

Normal Q-Q Plots

AN

AW

Cxen

Cxew

Boxplot

Frequencies

Output Created

22 Jun 98 12:14:25

Comments


Input

Data

A:\guns\spss\exp1data.sav

Filter

<none>

Weight

<none>

Split File

<none>

N of Rows in Working Data File

32

Missing Value Handling

Definition of Missing

User-defined missing values are treated as missing.

Cases Used

Statistics are based on all cases with valid data.

Syntax

FREQUENCIES
VARIABLES=an aw cxen cxew
/STATISTICS=STDDEV VARIANCE RANGE MINIMUM MAXIMUM MEAN MEDIAN .

Resources

Total Values Allowed

18724

Elapsed Time

0:00:00.38


N

Mean

Median

Std. Deviation

Variance

Range

Minimum

Maximum

Valid

Missing






AN

32

0

41.6395

42.0833

5.1220

26.2351

23.27

31.12

54.39

AW

32

0

40.9184

41.3928

5.2845

27.9262

24.40

28.56

52.95

CXEN

32

0

41.3356

42.6035

6.0892

37.0790

28.61

26.83

55.45

CXEW

32

0

41.4576

42.6907

5.5310

30.5923

26.04

28.89

54.92


Frequency

Percent

Valid Percent

Cumulative Percent

Valid

31.12

1

3.1

3.1

3.1

34.18

1

3.1

3.1

6.3

34.31

1

3.1

3.1

9.4

34.41

1

3.1

3.1

12.5

37.14

1

3.1

3.1

15.6

37.21

1

3.1

3.1

18.8

37.54

1

3.1

3.1

21.9

38.08

1

3.1

3.1

25.0

38.33

1

3.1

3.1

28.1

38.88

1

3.1

3.1

31.3

39.04

1

3.1

3.1

34.4

40.26

1

3.1

3.1

37.5

41.13

1

3.1

3.1

40.6

41.76

1

3.1

3.1

43.8

41.82

1

3.1

3.1

46.9

41.88

1

3.1

3.1

50.0

42.29

1

3.1

3.1

53.1

42.63

1

3.1

3.1

56.3

42.64

2

6.3

6.3

62.5

42.77

1

3.1

3.1

65.6

43.04

1

3.1

3.1

68.8

43.73

1

3.1

3.1

71.9

43.76

1

3.1

3.1

75.0

44.00

1

3.1

3.1

78.1

44.35

1

3.1

3.1

81.3

44.67

1

3.1

3.1

84.4

45.13

1

3.1

3.1

87.5

46.08

1

3.1

3.1

90.6

49.17

1

3.1

3.1

93.8

54.10

1

3.1

3.1

96.9

54.39

1

3.1

3.1

100.0

Total

32

100.0

100.0


Total

32

100.0




Frequency

Percent

Valid Percent

Cumulative Percent

Valid

28.56

1

3.1

3.1

3.1

30.12

1

3.1

3.1

6.3

33.32

1

3.1

3.1

9.4

33.71

1

3.1

3.1

12.5

34.78

1

3.1

3.1

15.6

35.79

1

3.1

3.1

18.8

38.13

1

3.1

3.1

21.9

38.58

1

3.1

3.1

25.0

38.67

1

3.1

3.1

28.1

38.71

1

3.1

3.1

31.3

39.13

1

3.1

3.1

34.4

39.77

1

3.1

3.1

37.5

39.83

1

3.1

3.1

40.6

40.22

1

3.1

3.1

43.8

41.14

1

3.1

3.1

46.9

41.17

1

3.1

3.1

50.0

41.62

1

3.1

3.1

53.1

41.70

1

3.1

3.1

56.3

42.52

1

3.1

3.1

59.4

42.71

1

3.1

3.1

62.5

42.83

1

3.1

3.1

65.6

43.25

1

3.1

3.1

68.8

43.78

1

3.1

3.1

71.9

44.13

3

9.4

9.4

81.3

44.63

1

3.1

3.1

84.4

44.67

1

3.1

3.1

87.5

47.08

1

3.1

3.1

90.6

47.90

1

3.1

3.1

93.8

49.77

1

3.1

3.1

96.9

52.95

1

3.1

3.1

100.0

Total

32

100.0

100.0


Total

32

100.0




Frequency

Percent

Valid Percent

Cumulative Percent

Valid

26.83

1

3.1

3.1

3.1

29.43

1

3.1

3.1

6.3

31.73

1

3.1

3.1

9.4

31.95

1

3.1

3.1

12.5

34.40

1

3.1

3.1

15.6

37.82

1

3.1

3.1

18.8

38.21

1

3.1

3.1

21.9

38.44

1

3.1

3.1

25.0

39.44

1

3.1

3.1

28.1

39.46

1

3.1

3.1

31.3

39.47

1

3.1

3.1

34.4

39.73

1

3.1

3.1

37.5

40.04

1

3.1

3.1

40.6

42.16

1

3.1

3.1

43.8

42.60

2

6.3

6.3

50.0

42.61

1

3.1

3.1

53.1

42.61

1

3.1

3.1

56.3

42.78

1

3.1

3.1

59.4

42.96

1

3.1

3.1

62.5

43.17

1

3.1

3.1

65.6

43.37

1

3.1

3.1

68.8

43.38

1

3.1

3.1

71.9

43.65

1

3.1

3.1

75.0

43.67

1

3.1

3.1

78.1

44.62

1

3.1

3.1

81.3

45.13

1

3.1

3.1

84.4

45.16

1

3.1

3.1

87.5

46.31

1

3.1

3.1

90.6

49.80

1

3.1

3.1

93.8

53.74

1

3.1

3.1

96.9

55.45

1

3.1

3.1

100.0

Total

32

100.0

100.0


Total

32

100.0




Frequency

Percent

Valid Percent

Cumulative Percent

Valid

28.89

1

3.1

3.1

3.1

30.03

1

3.1

3.1

6.3

33.69

1

3.1

3.1

9.4

34.69

1

3.1

3.1

12.5

35.27

1

3.1

3.1

15.6

36.88

1

3.1

3.1

18.8

37.78

1

3.1

3.1

21.9

38.22

1

3.1

3.1

25.0

38.38

1

3.1

3.1

28.1

38.67

1

3.1

3.1

31.3

38.76

1

3.1

3.1

34.4

39.92

1

3.1

3.1

37.5

41.55

1

3.1

3.1

40.6

41.80

1

3.1

3.1

43.8

42.29

1

3.1

3.1

46.9

42.63

1

3.1

3.1

50.0

42.75

1

3.1

3.1

53.1

42.77

1

3.1

3.1

56.3

42.98

1

3.1

3.1

59.4

43.04

2

6.3

6.3

65.6

43.24

1

3.1

3.1

68.8

43.50

1

3.1

3.1

71.9

43.59

1

3.1

3.1

75.0

44.49

1

3.1

3.1

78.1

44.53

1

3.1

3.1

81.3

44.62

1

3.1

3.1

84.4

46.25

1

3.1

3.1

87.5

46.86

1

3.1

3.1

90.6

49.86

1

3.1

3.1

93.8

50.74

1

3.1

3.1

96.9

54.92

1

3.1

3.1

100.0

Total

32

100.0

100.0


Total

32

100.0



General Linear Model

Output Created

23 Jun 98 10:12:06

Comments


Input

Data

A:\exp1data.sav

Filter

<none>

Weight

<none>

Split File

<none>

N of Rows in Working Data File

32

Missing Value Handling

Definition of Missing

User-defined missing values are treated as missing.

Cases Used

Statistics are based on all cases with valid data for all variables in the model.

Syntax

GLM
aw cxew an cxen
/WSFACTOR = prime 2 Polynomial wordtype 2 Polynomial
/METHOD = SSTYPE(3)
/PLOT = PROFILE( prime*wordtype )
/CRITERIA = ALPHA(.05)
/WSDESIGN
/DESIGN .

Resources

Elapsed Time

0:00:00.22

PRIME

WORDTYPE

Dependent Variable

1

1

AW

2

CXEW

2

1

AN

2

CXEN


PRIME

WORDTYPE

Effect

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

Pillai's Trace

.060

1.971(b)

1.000

31.000

.170

1.971

.275

Wilks' Lambda

.940

1.971(b)

1.000

31.000

.170

1.971

.275

Hotelling's Trace

.064

1.971(b)

1.000

31.000

.170

1.971

.275

Roy's Largest Root

.064

1.971(b)

1.000

31.000

.170

1.971

.275

WORDTYPE

Pillai's Trace

.007

.214(b)

1.000

31.000

.647

.214

.073

Wilks' Lambda

.993

.214(b)

1.000

31.000

.647

.214

.073

Hotelling's Trace

.007

.214(b)

1.000

31.000

.647

.214

.073

Roy's Largest Root

.007

.214(b)

1.000

31.000

.647

.214

.073

PRIME * WORDTYPE

Pillai's Trace

.132

4.719(b)

1.000

31.000

.038

4.719

.558

Wilks' Lambda

.868

4.719(b)

1.000

31.000

.038

4.719

.558

Hotelling's Trace

.152

4.719(b)

1.000

31.000

.038

4.719

.558

Roy's Largest Root

.152

4.719(b)

1.000

31.000

.038

4.719

.558

a Computed using alpha = .05

b Exact statistic

c Design: Intercept
Within Subjects Design: PRIME+WORDTYPE+PRIME*WORDTYPE


Mauchly's W

Approx. Chi-Square

df

Sig.

Epsilon(a)

Within Subjects Effect



Greenhouse-Geisser

Huynh-Feldt

Lower-bound

PRIME

1.000

.000

0

.

1.000

1.000

1.000

WORDTYPE

1.000

.000

0

.

1.000

1.000

1.000

PRIME * WORDTYPE

1.000

.000

0

.

1.000

1.000

1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the layers (by default) of the Tests of Within Subjects Effects table.

b Design: Intercept
Within Subjects Design: PRIME+WORDTYPE+PRIME*WORDTYPE

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.872

1

2.872

1.971

.170

1.971

.275

Error(PRIME)

45.178

31

1.457





WORDTYPE

.443

1

.443

.214

.647

.214

.073

Error(WORDTYPE)

64.123

31

2.068





PRIME * WORDTYPE

5.686

1

5.686

4.719

.038

4.719

.558

Error(PRIME*WORDTYPE)

37.351

31

1.205





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.872

1.000

2.872

1.971

.170

1.971

.275

Error(PRIME)

45.178

31.000

1.457





WORDTYPE

.443

1.000

.443

.214

.647

.214

.073

Error(WORDTYPE)

64.123

31.000

2.068





PRIME * WORDTYPE

5.686

1.000

5.686

4.719

.038

4.719

.558

Error(PRIME*WORDTYPE)

37.351

31.000

1.205





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.872

1.000

2.872

1.971

.170

1.971

.275

Error(PRIME)

45.178

31.000

1.457





WORDTYPE

.443

1.000

.443

.214

.647

.214

.073

Error(WORDTYPE)

64.123

31.000

2.068





PRIME * WORDTYPE

5.686

1.000

5.686

4.719

.038

4.719

.558

Error(PRIME*WORDTYPE)

37.351

31.000

1.205





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.872

1.000

2.872

1.971

.170

1.971

.275

Error(PRIME)

45.178

31.000

1.457





WORDTYPE

.443

1.000

.443

.214

.647

.214

.073

Error(WORDTYPE)

64.123

31.000

2.068





PRIME * WORDTYPE

5.686

1.000

5.686

4.719

.038

4.719

.558

Error(PRIME*WORDTYPE)

37.351

31.000

1.205





a Computed using alpha = .05

Source

Transformed Variable

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

PRIME_1

2.872

1

2.872

1.971

.170

1.971

.275

Error(PRIME)

PRIME_1

45.178

31

1.457





WORDTYPE

WORDTYPE_1

.443

1

.443

.214

.647

.214

.073

Error(WORDTYPE)

WORDTYPE_1

64.123

31

2.068





PRIME * WORDTYPE

PRIME_1*WORDTYPE_1

5.686

1

5.686

4.719

.038

4.719

.558

Error(PRIME*WORDTYPE)

PRIME_1*WORDTYPE_1

37.351

31

1.205





a Computed using alpha = .05

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

Intercept

218728.237

1

218728.237

1867.847

.000

1867.847

1.000

Error

3630.156

31

117.102





a Computed using alpha = .05

Profile Plots

Prime * wordtype

T-Test

Output Created

23 Jun 98 10:31:48

Comments


Input

Data

A:\exp1data.sav

Filter

<none>

Weight

<none>

Split File

<none>

N of Rows in Working Data File

32

Missing Value Handling

Definition of Missing

User defined missing values are treated as missing.

Cases Used

Statistics for each analysis are based on the cases with no missing or out-of-range data for any variable in the analysis.

Syntax

T-TEST
/TESTVAL=0
/MISSING=ANALYSIS
/VARIABLES=diff
/CRITERIA=CIN (.95) .

Resources

Elapsed Time

0:00:00.11


N

Mean

Std. Deviation

Std. Error Mean

DIFF

32

.8431

2.1953

.3881


Test Value = 0

t

df

Sig. (2-tailed)

Mean Difference

95% Confidence Interval of the Difference

Lower

Upper

DIFF

2.172

31

.038

.8431

5.156E-02

1.6346

General Linear Model

Output Created

23 Jun 98 11:00:43

Comments


Input

Data

A:\exp1dat2.sav

Filter

<none>

Weight

<none>

Split File

<none>

N of Rows in Working Data File

32

Missing Value Handling

Definition of Missing

User-defined missing values are treated as missing.

Cases Used

Statistics are based on all cases with valid data for all variables in the model.

Syntax

GLM
aw cxew an cxen BY sex
/WSFACTOR = prime 2 Polynomial wordtype 2 Polynomial
/METHOD = SSTYPE(3)
/PLOT = PROFILE( prime*wordtype*sex )
/CRITERIA = ALPHA(.05)
/WSDESIGN
/DESIGN .

Resources

Elapsed Time

0:00:01.65

PRIME

WORDTYPE

Dependent Variable

1

1

AW

2

CXEW

2

1

AN

2

CXEN


PRIME

WORDTYPE


Value Label

N

SEX

F


15

M


17

Effect

Value

F

Hypothesis df

Error df

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

Pillai's Trace

.059

1.869(b)

1.000

30.000

.182

1.869

.263

Wilks' Lambda

.941

1.869(b)

1.000

30.000

.182

1.869

.263

Hotelling's Trace

.062

1.869(b)

1.000

30.000

.182

1.869

.263

Roy's Largest Root

.062

1.869(b)

1.000

30.000

.182

1.869

.263

PRIME * SEX

Pillai's Trace

.001

.036(b)

1.000

30.000

.851

.036

.054

Wilks' Lambda

.999

.036(b)

1.000

30.000

.851

.036

.054

Hotelling's Trace

.001

.036(b)

1.000

30.000

.851

.036

.054

Roy's Largest Root

.001

.036(b)

1.000

30.000

.851

.036

.054

WORDTYPE

Pillai's Trace

.007

.196(b)

1.000

30.000

.661

.196

.071

Wilks' Lambda

.993

.196(b)

1.000

30.000

.661

.196

.071

Hotelling's Trace

.007

.196(b)

1.000

30.000

.661

.196

.071

Roy's Largest Root

.007

.196(b)

1.000

30.000

.661

.196

.071

WORDTYPE * SEX

Pillai's Trace

.001

.033(b)

1.000

30.000

.857

.033

.054

Wilks' Lambda

.999

.033(b)

1.000

30.000

.857

.033

.054

Hotelling's Trace

.001

.033(b)

1.000

30.000

.857

.033

.054

Roy's Largest Root

.001

.033(b)

1.000

30.000

.857

.033

.054

PRIME * WORDTYPE

Pillai's Trace

.130

4.483(b)

1.000

30.000

.043

4.483

.536

Wilks' Lambda

.870

4.483(b)

1.000

30.000

.043

4.483

.536

Hotelling's Trace

.149

4.483(b)

1.000

30.000

.043

4.483

.536

Roy's Largest Root

.149

4.483(b)

1.000

30.000

.043

4.483

.536

PRIME * WORDTYPE * SEX

Pillai's Trace

.003

.089(b)

1.000

30.000

.768

.089

.060

Wilks' Lambda

.997

.089(b)

1.000

30.000

.768

.089

.060

Hotelling's Trace

.003

.089(b)

1.000

30.000

.768

.089

.060

Roy's Largest Root

.003

.089(b)

1.000

30.000

.768

.089

.060

a Computed using alpha = .05

b Exact statistic

c Design: Intercept+SEX
Within Subjects Design: PRIME+WORDTYPE+PRIME*WORDTYPE


Mauchly's W

Approx. Chi-Square

df

Sig.

Epsilon(a)

Within Subjects Effect



Greenhouse-Geisser

Huynh-Feldt

Lower-bound

PRIME

1.000

.000

0

.

1.000

1.000

1.000

WORDTYPE

1.000

.000

0

.

1.000

1.000

1.000

PRIME * WORDTYPE

1.000

.000

0

.

1.000

1.000

1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the layers (by default) of the Tests of Within Subjects Effects table.

b Design: Intercept+SEX
Within Subjects Design: PRIME+WORDTYPE+PRIME*WORDTYPE

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.812

1

2.812

1.869

.182

1.869

.263

PRIME * SEX

5.408E-02

1

5.408E-02

.036

.851

.036

.054

Error(PRIME)

45.124

30

1.504





WORDTYPE

.419

1

.419

.196

.661

.196

.071

WORDTYPE * SEX

7.037E-02

1

7.037E-02

.033

.857

.033

.054

Error(WORDTYPE)

64.053

30

2.135





PRIME * WORDTYPE

5.566

1

5.566

4.483

.043

4.483

.536

PRIME * WORDTYPE * SEX

.110

1

.110

.089

.768

.089

.060

Error(PRIME*WORDTYPE)

37.241

30

1.241





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.812

1.000

2.812

1.869

.182

1.869

.263

PRIME * SEX

5.408E-02

1.000

5.408E-02

.036

.851

.036

.054

Error(PRIME)

45.124

30.000

1.504





WORDTYPE

.419

1.000

.419

.196

.661

.196

.071

WORDTYPE * SEX

7.037E-02

1.000

7.037E-02

.033

.857

.033

.054

Error(WORDTYPE)

64.053

30.000

2.135





PRIME * WORDTYPE

5.566

1.000

5.566

4.483

.043

4.483

.536

PRIME * WORDTYPE * SEX

.110

1.000

.110

.089

.768

.089

.060

Error(PRIME*WORDTYPE)

37.241

30.000

1.241





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.812

1.000

2.812

1.869

.182

1.869

.263

PRIME * SEX

5.408E-02

1.000

5.408E-02

.036

.851

.036

.054

Error(PRIME)

45.124

30.000

1.504





WORDTYPE

.419

1.000

.419

.196

.661

.196

.071

WORDTYPE * SEX

7.037E-02

1.000

7.037E-02

.033

.857

.033

.054

Error(WORDTYPE)

64.053

30.000

2.135





PRIME * WORDTYPE

5.566

1.000

5.566

4.483

.043

4.483

.536

PRIME * WORDTYPE * SEX

.110

1.000

.110

.089

.768

.089

.060

Error(PRIME*WORDTYPE)

37.241

30.000

1.241





a Computed using alpha = .05



Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

2.812

1.000

2.812

1.869

.182

1.869

.263

PRIME * SEX

5.408E-02

1.000

5.408E-02

.036

.851

.036

.054

Error(PRIME)

45.124

30.000

1.504





WORDTYPE

.419

1.000

.419

.196

.661

.196

.071

WORDTYPE * SEX

7.037E-02

1.000

7.037E-02

.033

.857

.033

.054

Error(WORDTYPE)

64.053

30.000

2.135





PRIME * WORDTYPE

5.566

1.000

5.566

4.483

.043

4.483

.536

PRIME * WORDTYPE * SEX

.110

1.000

.110

.089

.768

.089

.060

Error(PRIME*WORDTYPE)

37.241

30.000

1.241





a Computed using alpha = .05

Source

Transformed Variable

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

PRIME

PRIME_1

2.812

1

2.812

1.869

.182

1.869

.263

PRIME * SEX

PRIME_1

5.408E-02

1

5.408E-02

.036

.851

.036

.054

Error(PRIME)

PRIME_1

45.124

30

1.504





WORDTYPE

WORDTYPE_1

.419

1

.419

.196

.661

.196

.071

WORDTYPE * SEX

WORDTYPE_1

7.037E-02

1

7.037E-02

.033

.857

.033

.054

Error(WORDTYPE)

WORDTYPE_1

64.053

30

2.135





PRIME * WORDTYPE

PRIME_1*WORDTYPE_1

5.566

1

5.566

4.483

.043

4.483

.536

PRIME * WORDTYPE * SEX

PRIME_1*WORDTYPE_1

.110

1

.110

.089

.768

.089

.060

Error(PRIME*WORDTYPE)

PRIME_1*WORDTYPE_1

37.241

30

1.241





a Computed using alpha = .05

Source

Type III Sum of Squares

df

Mean Square

F

Sig.

Noncent. Parameter

Observed Power(a)

Intercept

217461.675

1

217461.675

1822.198

.000

1822.198

1.000

SEX

49.947

1

49.947

.419

.523

.419

.096

Error

3580.210

30

119.340





a Computed using alpha = .05

Profile Plots

PRIME * WORDTYPE * SEX

Sex = f

Sex = m